Genome Sequencing Reveals the Potential of Achromobacter sp. HZ01 for Bioremediation
نویسندگان
چکیده
Petroleum pollution is a severe environmental issue. Comprehensively revealing the genetic backgrounds of hydrocarbon-degrading microorganisms contributes to developing effective methods for bioremediation of crude oil-polluted environments. Marine bacterium Achromobacter sp. HZ01 is capable of degrading hydrocarbons and producing biosurfactants. In this study, the draft genome (5.5 Mbp) of strain HZ01 has been obtained by Illumina sequencing, containing 5,162 predicted genes. Genome annotation shows that "amino acid metabolism" is the most abundant metabolic pathway. Strain HZ01 is not capable of using some common carbohydrates as the sole carbon sources, which is due to that it contains few genes associated with carbohydrate transport and lacks some important enzymes related to glycometabolism. It contains abundant proteins directly related to petroleum hydrocarbon degradation. AlkB hydroxylase and its homologs were not identified. It harbors a complete enzyme system of terminal oxidation pathway for n-alkane degradation, which may be initiated by cytochrome P450. The enzymes involved in the catechol pathway are relatively complete for the degradation of aromatic compounds. This bacterium lacks several essential enzymes for methane oxidation, and Baeyer-Villiger monooxygenase involved in the subterminal oxidation pathway and cycloalkane degradation was not identified. These results suggest that strain HZ01 degrades n-alkanes via the terminal oxidation pathway, degrades aromatic compounds primarily via the catechol pathway and cannot perform methane oxidation or cycloalkane degradation. Additionally, strain HZ01 possesses abundant genes related to the metabolism of secondary metabolites, including some genes involved in biosurfactant (such as glycolipids and lipopeptides) synthesis. The genome analysis also reveals its genetic basis for nitrogen metabolism, antibiotic resistance, regulatory responses to environmental changes, cell motility, and material transport. The obtained genome data provide us with a better understanding of hydrocarbon-degrading bacteria, which may contribute to the future design of rational strategies for bioremediation of petroleum-polluted marine environments.
منابع مشابه
Draft Genome Sequence of Achromobacter sp. Strain DMS1, Capable of Degrading Polyaromatic Hydrocarbons Isolated from the Industrially Perturbed Environment of Amlakhadi Canal, India
Here, we report the draft genome sequence of Achromobacter sp. strain DMS1, which is 4.9 Mbp and has 3,727 coding sequences (CDSs), and is capable of degrading xenobiotic compounds and harboring genes for aromatic hydrocarbon metabolism. Its genome will unravel the basic mechanism involved in bioremediation of anthropogens.
متن کاملDraft Genome Sequence of the Broad-Spectrum Xenobiotic Degrader Achromobacter xylosoxidans ADAF13
Achromobacter xylosoxidansADAF13, isolated from farmland soil, possesses a large number of putative degradation genes and pathways that break down a wide variety of aromatic hydrocarbons, pesticides, endocrine disruptors, and other high-impact xenobiotics. These properties make this strain an excellent candidate for further development as a broad-spectrum bioremediation agent.
متن کاملIsolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity.
Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp. TL-3 strain, isolated from ...
متن کاملBioremediation Activity of Pb (II) Resistance Citrobacter sp. MKH2 Isolated from Heavy Metal Contaminated Sites in Iran
Heavy metal pollution all around the world has become a major environmental concern and the bioremediation of polluted environments is an increasingly popular strategy due to both its efficiency and safety. In this study, a bacterial strain resistant to heavy metal was isolated from metal contaminated sites. Strain MKH2 was removed Pb (II) with 95.06%. This isolate was also resistant to zinc, c...
متن کاملBioremediation of Textile Dyes Wastewater: Potential of Bacterial Isolates from a Mining Soils and Wetlands
New bacteria that was provided from contaminated soils surrounding the coal, aluminum, salt mines and wetland separated, synthesized and characterized. The achievements show that this soils and waters have five disposed bacteria consist of Microbacterium SP, Micrococcaceae Bacterium, Planomicrobium SP, Brevndimonas Aurantiaca and Halomonas SP. Secondly, the result of the potential of remova...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017